From members to teams to committee-a robust approach to gestural and multimodal recognition

نویسندگان

  • Lizhong Wu
  • Sharon L. Oviatt
  • Philip R. Cohen
چکیده

When building a complex pattern recognizer with high-dimensional input features, a number of selection uncertainties arise. Traditional approaches to resolving these uncertainties typically rely either on the researcher's intuition or performance evaluation on validation data, both of which result in poor generalization and robustness on test data. This paper describes a novel recognition technique called members to teams to committee (MTC), which is designed to reduce modeling uncertainty. In particular, the MTC posterior estimator is based on a coordinated set of divide-and-conquer estimators that derive from a three-tiered architectural structure corresponding to individual members, teams, and the overall committee. Basically, the MTC recognition decision is determined by the whole empirical posterior distribution, rather than a single estimate. This paper describes the application of the MTC technique to handwritten gesture recognition and multimodal system integration and presents a comprehensive analysis of the characteristics and advantages of the MTC approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation testing of a hybrid symbolic/statistical multimodal architecture

The design and implementation of hybrid symbolic/statistical architectures is a major area of interest in current multimodal system development. Such an architecture attempts to improve multimodal recognition and disambiguation rates by using corpus-based statistics to weight the contributions from various input streams. This is in contrast to current architectures that assume independence betw...

متن کامل

Implementation Test Symbolic/statistical Mult

The design and implementation of hybrid symbolic/statistical architectures is a major area of interest in current multimodal system development. Such an architecture attempts to improve multimodal recognition and disambiguation rates by using corpus-based statistics to weight the contributions from various input streams. This is in contrast to current architectures that assume independence betw...

متن کامل

A Multimodal Approach toward Teaching for Transfer: A Case of Team-Teaching in ESAP Writing Courses

This paper presents a detailed examination of learning transfer from an English for Specific Academic Purposes course to authentic discipline-specific writing tasks. To enhance transfer practices, a new approach in planning writing tasks and materials selection was developed. Concerning the conventions of studies in learning transfer that acknowledge different learning preferences, the instruct...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Analysis of Media Consumption Behavior of Sports Fans with a Network Approach

Fans like to talk about their favorite team and players with others. Professional team fans use social media to learn more about teams, connect with other fans, follow teams and players, and build a fan community. Social media by creating a network of users has become a platform for researchers to study fan behavior. Given that members of the fan community interact with each other, their opinio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2002